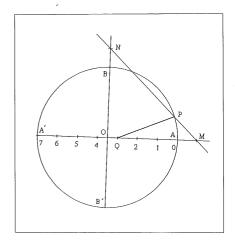
División de la circunferencia en partes iguales: un método aproximado

P. Familiar Ramos

En esta sección se describe el método Bardin, un método general no muy conocido y bastante preciso para las construcciones aproximadas de los polígonos regulares inscritos en una circunferencia de radio conocido.

Construcción

Se trazan, en la circunferencia, dos diámetros AA' en tantas partes iguales (n) como lados tenga el polígono que se desea inscribir. Llevando una de esas n partes a las prolongaciones de los diámetros AA' y BB' se obtienen los puntos M y N. Se traza la recta MN que cortará a la circunferencia en P, y al unir este punto con el tercer punto de división de las efectuadas en el diámetro, queda determinado el segmento PQ, lado aproximado del n-gono regular inscrito en la circunferencia (en la figura adjunta se ha tomado n=7). Según los valores de n, esta longitud aproximada difiere de la longitud exacta del lado.



Deducción

Mediante la Geometría Analítica, vamos a expresar la longitud del segmento PQ en función del número de lados del polígono regular inscrito.

En centro O de la circunferencia, que suponemos de radio unidad, será el origen de coordenadas, y a los diámetros perpendiculares AA' y BB' los identificamos con los ejes coordenados Ox y Oy.

Entonces el punto P está determinado por la intersección de la circunferencia

$$C \equiv x^2 + y^2 = 1 \tag{1}$$

con la recta que pasa por los puntos M=((n+2)/n,0) y N=(0, (n+2)/n), es decir

$$MN \equiv x + y = (n+2)/n \qquad (2)$$

Resolviendo este sistema no lineal, se obtiene

$$P = ((n+2+\sqrt{n^2-4n-4})/2n, (n+2-\sqrt{n^2-4n-4})/2n)$$

y como es Q = ((n-6)/n,0), basta aplicar la distancia euclídea entre dos puntos para obtener la longitud del segmento buscado. Resulta así:

$$PQ = (1/n) \sqrt{n^2 - 8n + 48 - (n-6) \sqrt{n^2 - 4n - 4}}$$
 (3)

Ahora bien, el radical $\sqrt{n^2-4n-4}$ tiene raíces complejas para valores naturales inferiores a cinco, de modo que el método Bardin solamente es aplicable cuando $n \ge 5$ (de hecho, en la construcción del triángulo y del cuadrado, la recta MN es *exterior* a la circunferencia C, y por tanto en estos dos casos P es el conjunto vacío).

Comparación

Nos interesa ahora formar una tabla de valores entre la longitud L=2 sen (Π/n) del lado del n-gono regular, y la longitud aproximada del segmento PQ obtenido en (3). Creemos que hasta n=50 es suficiente. Como se observa, este método es exacto en la construcción del hexágono regular.

n	${f L}$	PQ PQ	L-PQ
5	1.175570504584	1.166190378969	+0.009380125615
6	1	1	0
7	0.867767478235	0.867519268437	+0.000248209797
8	0.765366864730	0.764617906577	+0.000748958153
9	0.684040286651	0.683045352937	+0.000994933714
10	0.618033988749	0.616982503040	+0.001051485709
11	0.563465113682	0.562461982358	+0.001003313132
12	0.517638090205	0.516734012547	+0.000904077657
13	0.478631328575	0.477846372472	+0.000784956102
14	0.445041867912	0.444379696550	+0.000662171361
15	0.415823381635	0.415279301653	+0.000544079981
16	0.390180644032	0.389746051094	+0.000434592937
1,7	0.367499035633	0.367163830713	+0.000335204919
18	0.347296355333	0.347050228618	+0.000246126715
19	0.329189180561	0.329022265220	+0.000166915341
20	0.312868930080	0.312772106793	+0.000096823287
21	0.298084532351	0.298049542287	+0.000034990064
22	0.284629676546	0.284649131665	-0.000019455118
23	0.272333298192	0.272400639023	-0.000067340831
24	0.261052384440	0.261161813508	-0.000109429068
25	0.250666467128	0.250812873674	-0.000146406545
26	0.241073360510	0.241252244946	-0.000178884435
27	0.232185828250	0.232393230697	-0.000207402446
28	0.223928952206	0.224161387100	-0.000232434893
29	0.216238036847	0.216492434293	-0.000254397445
30	0.209056926535	0.209330580383	-0.000273653847
31	0.202336643974	0.202627166214	-0.000290522239
32	0.196034280659	0.196339561571	-0.000305280912
33	0.190112086608	0.190430260057	-0.000318173448
34	0.184536718926	0.184866132178	-0.000329413251
35 -	0.179278617806	0.179617805306	-0.000339187499
36	0.174311485495	0.174659146082	-0.000347660587
37	0.169611848951	0.169966826059	-0.000354977108
38	0.165158690944	0.165519955372	-0.000361264427
39	0.160933137433	0.161299772341	-0.000366634908
40	0.156918191455	0.157289379286	-0.000371187831
41	0.153098505672	0.153473516726	-0.000375011053
42	0.149460187172	0.149838369618	-0.000378182445
43	0.145990629321	0.146371400446	-0.000380771124
44	0.142678366398	0.143061204932	-0.000382838533
45	0.139512947488	0.139897386860	-0.000384439371
46	0.136484826729	0.136870449129	-0.000385622400
47	0.133585267490	0.133971698637	-0.000386431147
48	0.130806258460	0.131193162981	-0.000386904521
49	0.128140439961	0.128527517303	-0.000389904321
50	0.125581039058	0.125968019869	-0.000387077341
		0.120000010000	0.0000000011

Estos resultados han sido evaluados con el programa DERIVE A Mathematical Assistant, en un ordenador PS/2 MODELO 30_021 de IBM.

Bibliografía

ITALO GHERSI: **Matematica Dilettevole** e Curiosa. Ulrico Hoepli, Milano (1986).

GABRIEL VELASCO SOTOMAYOR: **Tratado de Geometría**. Limusa, México (1983).

P. Familiar Ramos